Department of Revised Syllabus of II Year Diploma Program (UG)

Title of Program:

Syllabus Structure (UG)

Year	Semester	Course No.	Course Code	Contact Hours	Credits (1Credit=15 H)	Total Marks
2	III	CT III	DST 303	30	2	75
		CL III	DSL303	60	2	75
	IV	CT IV	DST 404	30	2	75
		CL IV	DSL404	60	2	75
	Annual	CP II	DSP202	30	1	50
	Industrial and or Incubation and or Research and or Field Training			30	1	-
			Total	240	10	350

D: Diploma, *: Departmental Code (S: Statistics)

C: Course, T: Theory, L: Lab (Practical), P: Project

Total No. of Courses: 6 (Theory: 02, Practical: 02, Project: 01)

Theory and Practical: Semester, Project: Annual

Semester III

CT-III: DST 303: Title: Fundamentals of R programming (Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1. Understand basics of R Programming
- 2. Perform different sampling methods using R programming

Unit I: Basic of R programming

(15)

- 1.1 Introduction to R, loops, functions in R
- 1.2 Vectors and vector arithmetic,
- 1.3 Data frames: creation using data frame, subset and transform commands
- 1.4 **Diagrams**: Simple bar diagram, subdivided bar diagram, multiple bar diagram, pie diagram, teem and leaf diagram
- 1.5 **Graphs**: Box plot Histogram (both equal and unequal class intervals), frequency Polygon, ogive curves.

Advanced Diploma/Diploma Courses

Unit II: Measures of central tendency and Measures of dispersion

(15)

- 3.1 Discrete and continuous random variables, ungrouped and grouped frequency distributions
- 3.2 mean, mode, median, Geometric mean and harmonic mean(for Discrete and continuous

random variables)

- 3.3 Quartiles, deciles, percentiles (for Discrete and continuous random variables)
- 3.4 Variance, standard deviation, coefficient of variation, mean deviation (for ungrouped and

grouped data sets)

3.5 Moment, Skewness and Kurtosis, Example.

Learning Outcomes:

After completion of the unit, Student is able to

- 1. Write simple R code to compute measures of central tendency and measures of dispersion
- 2. Visualize data through R-programming

Reference Books:

- 1. Vishwas R. Pawgi and Saroj A. Ranade: Statistical methods using R software
- 2. Michael J, STATISTICS an introduction Using R, Wiley, 2014
- 3. Peter Dalgaard, Introductory Statistics with R, Springer, 2014

CL-III: DS L303: Title: Practical III (Contact Hrs: 60 Credits: 02)

Learning Objectives:

Students will be able to

- 1. Import and export data of different type.
- 2. Visualize data through R programming

List of Practical's (15)

- 1. Data input/output and R commands
- 2. Looping statements in R
- 3. User defined Functions in R
- 4. Graphical Representation of data using R-Software I
- 5. Graphical Representation of data using R-Software II
- 6. Sampling Technique-I (SRSWOR, SRSWR)
- 7. Sampling Technique-II (Stratified random sampling, systematic sampling)
- 8. Measures of central tendency-I
- 9. Measures of central tendency -II
- 10. Measures of Dispersion-I
- 11. Measures of Dispersion-II
- 12. Measures of Moment (Ungrouped Data)
- 13. Measures of Moment (Grouped Data)

Advanced Diploma/Diploma Courses

- 14. Measures of Skewness and Kurtosis for ungrouped and grouped data
- 15. Regular expression in R

Learning Outcomes:

After completion of the unit, Student is able to

- 1. Write complex R code using different loops
- 2. Develop simple user defined function to perform simple tasks

Reference Books:

- 1. Vishwas R. Pawgi and Saroj A. Ranade: Statistical methods using R software
- 2. Michael J, STATISTICS an introduction Using R, Wiley, 2014
- 3. Peter Dalgaard, Introductory Statistics with R, Springer, 2014

Semester IV

CT-IV: DST 404: Title: R Programming for Statistics (Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1. Simulate random experiments
- 2. Compute probability using R- programming

Unit I: Probability Distributions and Testing of Hypothesis

(15)

- 1.1 Simulation of random experiment
- 1.2 Computation of probabilities of Discrete and continuous Distributions
- 1.3 Testing of hypothesis
- 1.4 Examples

Unit II: Correlation and Regression

(15)

- 2.1 Correlation: definition, computation of coefficient of correlation, types of correlation (multiple and partial correlation)
- 2.2 Regression: definition, computation of regression coefficients, fitting of lines of regression, multiple regression. Examples.

Learning Outcomes:

After completion of the unit, Student is able to

- 1. Perform testing procedure through R- programming
- 2. Perform correlation analysis using R Programming

Reference Books:

- 1. Vishwas R. Pawgi and Saroj A. Ranade: Statistical methods using R software
- 2. Michael J, STATISTICS an introduction Using R, Wiley, 2014

Advanced Diploma/Diploma Courses

- 3. Peter Dalgaard, Introductory Statistics with R, Springer, 2014
- 4. Verzani: Using R for introductory Statistics.

CL-IV:DSL404: Title (Practical): Practical IV (Contact Hrs: 60 Credits: 02)

Learning Objectives:

Students will be able to

- 1. Understand model sampling from distribution through R programming
- 2. Build simple and multiple regression model using R Programming

List of Practical's (15)

- 1. Model sampling from Binomial Distribution
- 2. Model sampling from Hypergeometric Distribution
- 3. Model sampling from Uniform Distribution
- 4. Model sampling from Poisson Distribution
- 5. Model sampling from Exponential Distribution
- 6. Model sampling from Normal Distributions
- 7. Measures of Correlation Coefficient-I
- 8. Measures of Correlation Coefficient-II
- 9. Fitting of simple regression lines
- 10. Fitting of multiple regression lines
- 11. Multiple and Partial Correlation
- 12. Testing of hypothesis: T test
- 13. Testing of hypothesis: Z test
- 14. Testing of hypothesis: F test
- 15. Testing of hypothesis: Chi-square test

Reference Books:

- 1. Vishwas R. Pawgi and Saroj A. Ranade: Statistical methods using R software
- 2. Michael J, STATISTICS an introduction Using R, Wiley, 2014
- 3. Peter Dalgaard, Introductory Statistics with R, Springer, 2014

CP-II: DSP202: Project (Contact Hrs. 60, Credits: 2)

Industrial and or Incubation and or Research and or Field Training (Contact Hrs. 60, Credits: 2)

BOS Sub-Committee

1. Dr. D. S Jadhave Chairman

2. Mr. P. H. Mahadik Member

Expert Committee

- 1. Name of Academic Expert
- 2. Name of Industrial Expert